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Abstraft A dynamical system of coupled neurons with variable thresholds is solved 
anolyriwlly and compmd with numerical simulations. The system behaviour is exwmely 
rich presenting intermittence, chaos. cnses etc depending OD the parameters. 

1. Introduction 

Many authors [I] have emphaiized the relevance of the chaotic behaviour present in natural 
neural systems like the human brain to the understanding of their striking features such as 
creativeness, complex interactions among memories, etc. Most neural network models based 
on the Hopfield model present very simple dynamics comprising only fixed points which, 
although suitable for panern retrieval, do not give adequate behaviour in some contexts since 
a never stopping path on the phase space is a characteristic of living brains. To circumvent 
this difficulty new ingredients had to be added to the Hopfield recipe, such as high order 
[Z] or asymmetric connections [3], time delays [4], dynamical thresholds [5,6], etc. In this 
paper we extend the study of a recent simple model proposed by Moreira and Auto [6] that 
presents complex behaviour using dynamical thresholds to analyse and highlight the role of 
complex dynamics in neural networks. Chaos and intermittency may wise in such systems: 
the chaotic behaviour being characterized by the presence of a non-periodic attractor along 
with sensitivity to initial conditions while the intermittency signature consists of abrupt 
bursts during laminar behaviour of the dynamical variable. 

There is biological evidence that neural thresholds are not static and may vary depending 
on the past history of a given neuron. When introduced, dynamical thresholds normally 
generate a rich behaviour. Horn and Usher [5] used a biologically inspired threshold rule 
and, when studying a network with only one pattern embedded, found an oscillating phase 
besides the usual ordered and disordered ones. When several patterns are embedded, the 
system exhibits transitions and may oscillate from one memory to another. 

Recently, Moreira and Auto [6] simulated networks with a low degree of connectivity 
(each neuron is connected with only ten neighbours) using the following rule for the 
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threshold evolution: 

@ ( t  + I )  = @ ( t )  - - +qa(t) (1) lW)I 
where p and q are tunable parameters and the threshold is the same for all neurons. The 
quantity a ( t )  is the network activity defined as the fraction of firing neurons: 

where S i ( t )  is the state of the ith neuron at the instant t and may assume the values 0 
(latent) or 1 (active). 

The noise-free dynamics is defined, as 

si(t + 1) = ;[I + sgn(hi(t) - @ ( t ) ) ]  (3) 

hj( t )  = Ji jS j  (4) 

where the local field acting on the ith neuron is the weighted sum of incoming signals 

j G  

and Jij are the synaptic connections and Ci is the cluster of neurons connected to i. The 
network studied by Moreira and Auto [6] had no previous learning and the connections are 
randomly chosen in the interval 1-1, I]. 

The role played by the above dynamical threshold is nonlinear in character and analytical 
calculation is welcome. Here we use a slightly different version that considers discrete & I  
synapses sorted with the same probability. We checked that besides making the analytical 
expressions simpler, this does not introduce any qualitative change in the model in the sense 
that the chaotidintermittent behaviour remains the same although there are some quantitative 
differences. These f l  connections are not equivalent to having only one pattern embedded 
via the Hebb rule because in that case the connections would be separable and any average 
over the synapses in a closed loop would be positive implying that the model could be 
mapped to a non-frustrated ferromagnet. The model using the Hebb prescription for the 
synapses is being studied and will be published elsewhere. 

2. The analytical solution 

Dilution in the synaptic connections has been introduced in numerous models of neural 
networks for several reasons; besides being more realistic biologically, such models turn out 
to have an exactly solvable dynamics in the limit of high dilution where annealing averages 
apply exactly [7]. Recently, Arenzon and Lemke [8] showed that reliable simulations of such 
systems may be performed with results agreeing successfully with the available theoretical 
predictions. 

The activity at a given time can be obtained as a function of the activity in the previous 
time step: 

(5 ) 
where (( ) ) I , s  denotes the average over the connections and over the possible network states. 
These averages can be easily evaluated observing that if the system has activity U at a given 
time, in the next time step the probability of having JijSj are given by 

a(r + 1) = $ [ I +  ((sgn(hi(r) - @(t ) ) ) )~ .~ l ,  

+I  with probability a/2 

--I a / 2  
JijSj = { 0 I-a 
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and the evolution of the activity is ruled by 

where C is the connectivity of each neuron. 

is thermal noise in the system or when the connectivity is not kept constant. 
The above fixed connectivity dynamics can be easily extended to the cases where there 

3. Results 

When the threshold given by (1) is allowed to be a dynamical variable many interesting 
new features are introduced that deserve attention. Since in this case the model presents a 
very complex behaviour, we first considered the situations where either the activity or the 
threshold are constant before coupling the maps a(t) and @(t) .  

3.1. The one-dimensional maps 

We studied the one-dimensional map @(t  + 1) = f (@(t)), where f is given by 

f ( @ ( t ) )  = @ ( t )  - - (8) ,&), + 

where c is a constant. 
Since the map is not defined at the origin (see figure I), there are two separate branches, 

one for 0 < 0 and another for 0 z 0. At each branch there is a fixed point at @* = +/c ,  
respectively. The stability analysis shows that 0, is stable for -c2/2 p e 0 while 0- 
is stable for p > cz/2. 

Figure 1. The plot of @(t  + I) versus (.)(t) for the decoupled one-dimensional situation with 
c = 1. The full cuwe is for p = 0.2 e pc while the dashed one is for p = 0. I e pc. The 45' 
line is also shown to indicate the unstable md stable fixed points (at the positive and negative 
branches, respectively). 



1338 N Lemke et a1 

For p > c2/2 the system settles d.own in the fixed point -p /c  if the initial condition 
obeys 0(0) c p/c. As the parameter p decreases, the system follows the period bifurcation 
route to chaos until the chaotic atkactor collides with the unstable orbit 0+ = p / c  at 
pc = cz(l - A)' when the attractor is suddenly destroyed. This phenomenon is called a 
boundary crisis. 

A crisis is a qualitative change of behaviour that occurs when the chaotic attractor 
collides with an unstable periodic orbit or with its stable manifold. When the unstable orbit 
is the boundary of the basin of attraction of the chaotic attractor, the crisis is denominated 
as a boundary crisis opposed to the interior crisis that happens when the collision occurs 
inside the basin of attraction. In general, boundary crises destroy the chaotic attractor while 
interior crises expand it [IO]. 

To obtain the value of p at which the crisis occurs, pc, we observe that the upper 
boundary of the chaotic attractor is defined by the relative maximum of the negative branch 
of the map, f ,  = f(O = -m.  when fmar equals the unstable fixed point on the 
positive branch, 0+ = p/c, the chaotic attractor is destroyed. For values of p just below 
the crisis, there is a chaotic transient: 0 wanders in the region previously occupied by the 
chaotic attractor and, after some steps, goes to infinity. As p approaches p= from below, 
the transient time diverges as [ p  - pc[-Y where y is the crisis exponent. To estimate y we 
first notice that there is an interval around the maximum of the negative branch that, for 
p > p c ,  lays above the fixed point on the positive branch and, once attained, injects the 
system in the divergent region. The interval length is proportional to Ip- pC['/' and a rough 
estimation of the mean transient time following Grebogi et al [ I l l  is obtained noticing that 
it is proportional to the inverse of the size of the interval and so scales as [ p  - pc[-l/z. This 
value, y = $, agrees with the one obtained numerically. 

For 0 c p c pc, the system diverges towards i o 0  depending whether the value of c is 
positive or not. 

The behaviour observed in the onedimensional map, equation (S), where the activity 
is held constant, is also reflected in the behaviour of both maps when they are coupled. 
However, some novel features are generated in this situation, as for instance, an intermittent 
behaviour that exists for low values of p due to the appearance of the reinjection mechanism. 

The one-dimensional map for the activity a(t) was also studied for constant values of 
0. Differently from the previous case, this map only presents fixed points. For large values 
of 0, the fixed point is a* = 0 while it is a" = 1 if 0 is low enough. The transition from 
a' = 1 to a* = 0 is made through discontinuous steps (where a remains constant) at integer 
values of 0. 

3.2. The two-dimensional care 

When both @(I) and a(t) are coupled, the nonlinearity present in the map of the dynamical 
threshold originates new features that are not found in the one-dimensional case (several 
crises, intermittency, etc). In order to study the coupled situation, we extend the scheme 
developed in [9] for continuous flows. 

Given a two-dimensional coupled map described by 

where the functions F&, y )  are not necessarily continuous (but have at most a finite number 
of discontinuities), the (XI, X Z )  plane can be divided in several regions depending on whether 
x i ( t  + 1) is greater or lower than x i @ ) .  These regions are called M and N for i = 1 and 
2, respectively. We are now interested in the one-dimensional boundaries of these regions, 
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aM and aN and in the points where they cross, aMnaN (called vertices). For continuous 
fi  all the vertices are fixed points of the system (and we call them ‘fixed vertices’) and orbits 
whose initial states~are close enough will spiral inwards if the fixed point is asymptotically 
stable. This may not be the case if any of the functions Fi are discontinuous because there 
may exist points belonging to aM n aN that are not fixed points (since these vertices lay 
in the region where there is a discontinuity, we call such vertices ‘jump vertices’). In this 
latter case, the evolution of an initial state that starts close to one vertex is expelled or at 
most rotates around it but never converges towards the point. 

The vertices location for the coupled maps, equations (1 )  and (7) may be seen in figure 
2(a) for q = 1 and p = 0.2,0.6. The full  curve^ is the boundary for the a equation and 
the other ones are the boundaries for 0 (given by a = p /q10[ ) .  When both curves meet 
we have the vertices of the coupled two-dimensional case. For p = 0.2 there are two 
fixed vertices and one jump vertex. For p = 0.6 there are no fixed vertices but one jump 
vertex: at large enough values of p the positive vertex disappears. When it exists and is 
a fixed point, it is unstable. Figure 2(b) shows a jump vertex and the boundaries of the 
four possible regions for a two-dimensional situation. In each region we indicate if the 
dynamical variables are increasing or not and the evolution of an initial state starting at one 
of the regions may be easily followed. 

The overall system behaviour is~shown in figure 3 where diagrams for both 0 and a are 
plotted as a function of p .  There are several important differences from the one-dimensional 
case that will be detailed below. 

Analogously to the one-dimensional case, here there is also a crisis when the chaotic 
attractor collides with the unstable periodic orbit. However, the crisis occurring at 
pc _N 0.054 (for q = 1) is an interior one: there is no other attractor of the dynamics 
and the unstable fixed point is no longer the boundary of the basin of attraction as in 
the previous situation. This change of behaviour from a boundary crisis in the one- 
dimensional case to an interior one when we have a two-dimensional system is also seen 
in the H6non map [Ill.  Usually, in interior crises, for some time the system remains 
in the region previously occupied by the destroyed attractor before being injected in the 
new allowed region. Apparently this is not what happens here: below the point where 

I .O 

..... 

0.4 
m 

0.2 ___..’. 

-4 -2 0 2 

0 
( b )  

Figure 2. (a) Vertices of the two-dimensional coupled maps (intersections of both curves). The 
full curve is the boundary for a and the dashed ones are the boundaries for (3. (b) Jump vertex 
(full circle) and the boundtuies of the four possible regions around it. The behaviour of each 
dynamical variable is indicated. 
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F i g u e  3. Bifurcation diagrams for (3 and a, Below 
pE z 0.054 the system is intermittent while above pE it 
may be chaotic. suffering an inverse bifurcation cascade 
until attaining the fixed point. Depending on the initial 
condition the system may be Vapped in the second 
chaotic afuilctor. 

1.4 

7.2 

1.0 

0.8 
CD 

Fiwe 4. Basin of attraction of the chaotic attmtor 
coexisting with the fixed point for p = 0.2. This basin 

O.’ 0.4 o.6 o.8~ is disjoint and presents islands (at least one) from where 
the fixed point is reached. 

o,6p. , , , ,- I  
0.4 

a 

the crisis occurs, the system is no longer chaotic but intermittent although the dynamical 
variables may assume values that are not in the region defined by the remnants of the late 
attractor. 

For increasing values of p (above p e )  the system suffers an inverse bifurcation cascade 
until attaining the fixed point 0 = -p/9a* at p N 0.157 (for 9 = 1). At this point, 
coexisting with the stable fixed point, a chaotic attractor and its basin of attraction are 
created around the jump vertex located at 0 = 1 and a = p ,  as can be seen in figure 3. 
Thus, depending on the initial condition, the dynamics may lead the system to one of the 
two attractors. The chaotic attractor appears when its basin of attraction and the stable 
manifold of the fixed point 0 = -p/9a stop overlapping. The basin of attraction is shown 
in figure 4 for p = 0.2 and presents a very complex structure, although not a fractal. In 
the case shown the basin of attraction is disjoint and presents at least one interior region 
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Figure 5. The threshold and the activily as a function of lime for p = 0.02 and q = I showing 
the intermittent behaviour. 

R = 0.05 L, = 0.15 

Figure 6. The solution of equation(7) versus t (bottom) along with the result of numerical 
simulation for N = 30000 and several values of p (y = 1) (top). The initial values of 8 and U 

were a(0) = 0.5 and e(0) = 0.9. ~ . 

that launches the system into the basin of the fixed point. An interesting feature is that an 
orbit starting inside one of the boundary fingers is mapped in all other fingers located at its 
left. For p i 0.157, still in the intermittent regime, the system presents a chaotic transient 
in the region formerly occupied by the chaotic attractor. 

For p = 0 the system stabilizes at any point where 0 > C and a = 0. When p > 0, 
the p-term and q-term in the threshold map (equation (1) compete and points with 0 > C 
are not stable anymore. For 0 e p c pc rr 0.054, the intermittency develops as follows: 
when 0 is large, a is zero and 0 slowly diminishes to small values, when it suffers a fast 
decrease, tnrns a = 1 and becomes large again in the following time step. This behaviour 
is clearly intermittent and not periodic, as it can be seen from figure 5. 

The above analytical results can be successfully compared with numerical simulations 
even without the use of exponentially large networks [8] as shown in figure 6. The 
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Figure 7. The activity n versus t for several values of N. The Auctuatlons can be seen Io 
decrease as Lhe network size increases. The pmeters  are p = 0.15 and y = I. 

simulation was performed using network sizes up to N = 30000 in contrast with [6] 
where only 300 neurons were utilized. Each neuron is connected to another randomly 
chosen 10 neurons. In figure 7 the white noise identified in [6]  as signalling chaos is 
actually a finite-size effect: its amplitude decreases as the samples size increase. On the 
other hand, the intermittent behaviour, also found by Moreira and Auto, does not disappear 
when larger networks are considered. In figure 6 we compare t h s  results from simulation 
with the analytical ones for several values of p showing the very good agreement between 
them. 

4. Conclusions 

In summary, we considered a recently proposed model for a dynamical system of coupled 
neurons with variable thresholds. We solved the model analytically and compared the results 
with numerical simulation. We introduced the notion of a jump vertex in discontinuous 
maps, generalizing the concept that appears in continuous flows. 

Besides the usual appearance of a chaotic attractor through a doubling period route, the 
system also presents another chaotic attractor around a jump vertex (for some range of p) 
that coexists with the stable fixed point. This chaotic attractor is destroyed several times 
due to the collision with the basin of attraction of the stable fixed point. Just after these 
crises occur, the system presents a chaotic transient in the region previously occupied by 
the former stable chaotic attractor. The first chaotic attractor is also destroyed in an interior 
crisis when it collides with the unstable fixed point. Below this value of p, there is no 
stable attractor of the dynamics and there is an intermittent behaviour in the activity. These 
results were also confirmed by numerical simulation. 

The same techniques can be applied for a model with learning and the effects of loading 
and different rules for the dynamical thresholds can be analysed. It would be interesting to 
investigate the role of asymmetric dilution studying either the fully connected model or a 
version with symmetric dilution. 
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